2010年10月31日 星期日

PXA270 ARM 板實現 dm9000a 網路驅動程式

轉載自:http://tw.myblog.yahoo.com/yh-chiang/article?mid=213&prev=391&next=126&l=f&fid=9

於PXA270 ARM 板實現 dm9000a 網路驅動程式在 Linux 2.6 版本的過程 <-97年年初完成---含完整 dm9000 網卡驅動程式

2008/05/26 00:32

首先先完成硬體線路,PXA270 ARM 板上的dm9000a 網路硬體線路如下所示:

1. 首先必須了解硬體線路及DM9000AEP 的SPEC,接著找到 davicom 上的 dm9000 驅動程式SOURCE CODE。

2. 修改 u-boot 上 dm9000 驅動部分。

3. 將 dm9000 驅動程式SOURCE CODE( dm9ks.c 及dm9ks.h)拷貝至 drivers/net 目錄,修改Linux 2.6 上對應的 kconfig 及 makefile 檔,接著依照上面硬體線路部份,修改 dm9ks.c 及dm9ks.h 驅動程式。最後 MAKE KERNEL 產生 zImage,將 zImage 透過 u-boot 燒寫至 PXA270 板,PXA270開機測試...完成^^。

#####晚了。。。先休息去,其它的細部部分有空再完成了( 用寫的過程很簡單,但想起年初時,整個實作過程蠻累人的 ^^ )。#####^^

我修改後可用於此 ARM-PXA270 開發板的網卡驅動程式如下:

/*
dm9ks.c: Version 2.04 2008/03/09
A Davicom DM9000A/DM9010 ISA NIC fast Ethernet driver for Linux.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

(C)Copyright 1997-2005 DAVICOM Semiconductor,Inc. All Rights Reserved.

V1.00 10/13/2004 Add new function Early transmit & IP/TCP/UDP Checksum
offload enable & flow control is default
V1.1 12/29/2004 Add Two packet mode & modify RX function
V1.2 01/14/2005 Add Early transmit mode
V1.3 03/02/2005 Support kernel 2.6
v1.33 06/08/2005 #define DM9KS_MDRAL 0xf4
#define DM9KS_MDRAH 0xf5
V2.00 Spenser - 01/10/2005
- Modification for PXA270 MAINSTONE.
- Modified dmfe_tx_done().
- Add dmfe_timeout().
V2.01 10/07/2005 Modified dmfe_timer()
Dected network speed 10/100M
V2.02 10/12/2005 Use link change to chage db->Speed
dmfe_open() wait for Link OK
V2.03 11/22/2005 Power-off and Power-on PHY in dmfe_init()
support IOL

Last modified by YiHua,Chiang/江義華.<microcyh@seed.net.tw> to support DM9000 on
ARM-PXA270 development board.
*/

#if defined(MODVERSIONS)
#include
#endif

#include "dm9ks.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#define CONFIG_ARCH_MAINSTONE
#ifdef CONFIG_ARCH_MAINSTONE
#include
#include
#include
#endif

typedef struct _RX_DESC
{
u8 rxbyte;
u8 status;
u16 length;
}RX_DESC;

typedef union{
u8 buf[4];
RX_DESC desc;
} rx_t;
#ifndef CONFIG_ARCH_MAINSTONE
#pragma pack(pop)
#endif

enum DM9KS_PHY_mode {
DM9KS_10MHD = 0,
DM9KS_100MHD = 1,
DM9KS_10MFD = 4,
DM9KS_100MFD = 5,
DM9KS_AUTO = 8,
};

/* Structure/enum declaration ------------------------------- */
typedef struct board_info {

u32 reset_counter; /* counter: RESET */
u32 reset_tx_timeout; /* RESET caused by TX Timeout */

u32 io_addr; /* Register I/O base address */
u32 io_data; /* Data I/O address */
int tx_pkt_cnt;

u8 op_mode; /* PHY operation mode */
u8 io_mode; /* 0:word, 2:byte */
u8 device_wait_reset; /* device state */
u8 Speed; /* current speed */

int cont_rx_pkt_cnt;/* current number of continuos rx packets */
struct timer_list timer;
struct net_device_stats stats;
unsigned char srom[128];
spinlock_t lock;

} board_info_t;
/* Global variable declaration ----------------------------- */
static struct net_device * dmfe_dev = NULL;
/* For module input parameter */
static int mode = DM9KS_AUTO;
static int media_mode = DM9KS_AUTO;
static u8 irq = DM9K_IRQ;
static u32 iobase = DM9KS_MIN_IO;
/* function declaration ------------------------------------- */
int dmfe_probe(struct net_device *);
static int dmfe_open(struct net_device *);
static int dmfe_start_xmit(struct sk_buff *, struct net_device *);
static void dmfe_tx_done(unsigned long);
static void dmfe_packet_receive(struct net_device *);
static int dmfe_stop(struct net_device *);
static struct net_device_stats * dmfe_get_stats(struct net_device *);
static int dmfe_do_ioctl(struct net_device *, struct ifreq *, int);
#if LINUX_VERSION_CODE <>

#if defined(CHECKSUM)
static u8 check_rx_ready(u8);
#endif
/*
Search DM9000 board, allocate space and register it
*/
struct net_device * __init dmfe_probe1(void)
{
struct net_device *dev;
int err;

#if LINUX_VERSION_CODE < dev =" init_etherdev(NULL," dev=" alloc_etherdev(sizeof(struct">

err = dmfe_probe(dev);
if (err)
goto out;
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
err = register_netdev(dev);
if (err)
goto out1;
#endif
return dev;
out1:
release_region(dev->base_addr,2);
out:
#if LINUX_VERSION_CODE <>

int __init dmfe_probe(struct net_device *dev)
{
struct board_info *db; /* Point a board information structure */
u32 id_val;
u16 i, dm9000_found = FALSE;
u32 iobase_max = iobase + 0x70;

DMFE_DBUG(0, "dmfe_probe()",0);
/* Search All DM9000 serial NIC */
do {
outb(DM9KS_VID_L, iobase);
id_val = inb(iobase + 0x4000);
outb(DM9KS_VID_H, iobase);
id_val |= inb(iobase + 0x4000) << id_val ="="" id_val ="="">name))
return -ENODEV;
printk(" I/O: %x, VID: %x \n",iobase, id_val);
dm9000_found = TRUE;
/* Allocated board information structure */
memset(dev->priv, 0, sizeof(struct board_info));
db = (board_info_t *)dev->priv;
dmfe_dev = dev;
db->io_addr = iobase;
db->io_data = iobase + 0x4000;
/* driver system function */
dev->base_addr = iobase;
dev->irq = irq;
dev->open = &dmfe_open;
dev->hard_start_xmit = &dmfe_start_xmit;
dev->watchdog_timeo = 3*HZ;
dev->tx_timeout = dmfe_timeout;
dev->stop = &dmfe_stop;
dev->get_stats = &dmfe_get_stats;
dev->set_multicast_list = &dm9000_hash_table;
dev->do_ioctl = &dmfe_do_ioctl;
#if defined(CHECKSUM)
dev->features = dev->features | NETIF_F_NO_CSUM;
#endif
#ifndef CONFIG_DM9000_NO_EEPROM
/* Read SROM content */
for (i=0; i<64;>srom)[i] = read_srom_word(db, i);
#else
((u8 *)db->srom)[0] = 0x00;
((u8 *)db->srom)[1] = 0x80;
((u8 *)db->srom)[2] = 0x48;
((u8 *)db->srom)[3] = 0x12;
((u8 *)db->srom)[4] = 0x34;
((u8 *)db->srom)[5] = 0x56;
#endif
/* Set Node Address */
for (i=0; i<6;>dev_addr[i] = db->srom[i];
}//end of if()
iobase += 0x10;
}while(!dm9000_found && iobase <= (0xf1000000+DM9KS_MAX_IO)); if(!dm9000_found) printk("dm9000 device wrong id!"); return dm9000_found ? 0:-ENODEV; } /* Open the interface. The interface is opened whenever "ifconfig" actives it. */ static int dmfe_open(struct net_device *dev) { board_info_t *db = (board_info_t *)dev->priv;
u8 reg_nsr;
int i;
DMFE_DBUG(0, "dmfe_open", 0); set_irq_type(dev->irq, IRQT_RISING);

if (request_irq(dev->irq,&dmfe_interrupt,SA_SHIRQ,dev->name,dev))
return -EAGAIN;

/* Initilize DM910X board */
dmfe_init_dm9000(dev);

/* Init driver variable */
db->reset_counter = 0;
db->reset_tx_timeout = 0;
db->cont_rx_pkt_cnt = 0;

/* check link state and media speed */
db->Speed =10;
i=0;
do {
reg_nsr = ior(db,0x1);
if(reg_nsr & 0x40) /* link OK!! */
{
/* wait for detected Speed */
mdelay(200);
reg_nsr = ior(db,0x1);
if(reg_nsr & 0x80)
db->Speed =10;
else
db->Speed =100;
break;
}
i++;
mdelay(1);
}while(i<3000);>timer);
db->timer.expires = DMFE_TIMER_WUT * 2;
db->timer.data = (unsigned long)dev;
db->timer.function = &dmfe_timer;
add_timer(&db->timer); //Move to DM9000 initiallization was finished.

netif_start_queue(dev);

return 0;
}

/* Set PHY operationg mode
*/
static void set_PHY_mode(board_info_t *db)
{
u16 phy_reg0 = 0x1200; /* Auto-negotiation & Restart Auto-negotiation */
u16 phy_reg4 = 0x01e1; /* Default flow control disable*/

if ( !(db->op_mode & DM9KS_AUTO) ) // op_mode didn't auto sense */
{
switch(db->op_mode) {
case DM9KS_10MHD: phy_reg4 = 0x21;
phy_reg0 = 0x1000;
break;
case DM9KS_10MFD: phy_reg4 = 0x41;
phy_reg0 = 0x1100;
break;
case DM9KS_100MHD: phy_reg4 = 0x81;
phy_reg0 = 0x3000;
break;
case DM9KS_100MFD: phy_reg4 = 0x101;
phy_reg0 = 0x3100;
break;
default:
break;
} // end of switch
} // end of if
phy_write(db, 0, phy_reg0);
phy_write(db, 4, phy_reg4);
}

/*
Initilize dm9000 board
*/
static void dmfe_init_dm9000(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
DMFE_DBUG(0, "dmfe_init_dm9000()", 0);

/* set the internal PHY power-on, GPIOs normal, and wait 2ms */
iow(db, DM9KS_GPR, 1); /* Power-Down PHY */
udelay(500);
iow(db, DM9KS_GPR, 0); /* GPR (reg_1Fh)bit GPIO0=0 pre-activate PHY */
udelay(20); /* wait 2ms for PHY power-on ready */

/* do a software reset and wait 20us */
iow(db, DM9KS_NCR, 3);
udelay(20); /* wait 20us at least for software reset ok */
iow(db, DM9KS_NCR, 3); /* NCR (reg_00h) bit[0] RST=1 & Loopback=1, reset on */
udelay(20); /* wait 20us at least for software reset ok */

udelay(1000); /* wait 4ms linking PHY (AUTO sense) if RX/TX */
udelay(1000);
udelay(1000);
udelay(1000);
/* I/O mode */
db->io_mode = ior(db, DM9KS_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */

/* Set PHY */
db->op_mode = media_mode;
set_PHY_mode(db);

/* Program operating register */
iow(db, DM9KS_NCR, 0);
iow(db, DM9KS_TCR, 0); /* TX Polling clear */
iow(db, DM9KS_BPTR, 0x3f); /* Less 3kb, 600us */
iow(db, DM9KS_SMCR, 0); /* Special Mode */
iow(db, DM9KS_NSR, 0x2c); /* clear TX status */
iow(db, DM9KS_ISR, 0x0f); /* Clear interrupt status */

/* Added by jackal at 03/29/2004 */
#if defined(CHECKSUM)
iow(db, DM9KS_TCCR, 0x07); /* TX UDP/TCP/IP checksum enable */
iow(db, DM9KS_RCSR, 0x02); /*Receive checksum enable */
#endif

#if defined(ETRANS)
iow(db, DM9KS_ETXCSR, 0x83);
#endif

/* Set address filter table */
dm9000_hash_table(dev);

/* Activate DM9000A/DM9010 */
iow(db, DM9KS_RXCR, DM9KS_REG05 | 1); /* RX enable */
iow(db, DM9KS_IMR, DM9KS_REGFF); // Enable TX/RX interrupt mask

/* Init Driver variable */
db->tx_pkt_cnt = 0;

netif_carrier_on(dev);
spin_lock_init(&db->lock);

}

/*
Hardware start transmission.
Send a packet to media from the upper layer.
*/
static int dmfe_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
char * data_ptr;
int i, tmplen;
if(db->Speed == 10)
{if (db->tx_pkt_cnt >= 1) return 1;}
else
{if (db->tx_pkt_cnt >= 2) return 1;}

/* packet counting */
db->tx_pkt_cnt++;

db->stats.tx_packets++;
db->stats.tx_bytes+=skb->len;
if (db->Speed == 10)
{if (db->tx_pkt_cnt >= 1) netif_stop_queue(dev);}
else
{if (db->tx_pkt_cnt >= 2) netif_stop_queue(dev);}

/* Disable all interrupt */
iow(db, DM9KS_IMR, DM9KS_DISINTR);

/* Set TX length to reg. 0xfc & 0xfd */
iow(db, DM9KS_TXPLL, (skb->len & 0xff));
iow(db, DM9KS_TXPLH, (skb->len >> 8) & 0xff);

/* Move data to TX SRAM */
data_ptr = (char *)skb->data;

outb(DM9KS_MWCMD, db->io_addr); // Write data into SRAM trigger
switch(db->io_mode)
{
case DM9KS_BYTE_MODE:
for (i = 0; i <>len; i++)
outb((data_ptr[i] & 0xff), db->io_data);
break;
case DM9KS_WORD_MODE:
tmplen = (skb->len + 1) / 2;
for (i = 0; i <>io_data);
break;
case DM9KS_DWORD_MODE:
tmplen = (skb->len + 3) / 4;
for (i = 0; i<>io_data);
break;
}

#if !defined(ETRANS)
/* Issue TX polling command */
iow(db, DM9KS_TCR, 0x1); /* Cleared after TX complete*/
#endif

/* Saved the time stamp */
dev->trans_start = jiffies;
db->cont_rx_pkt_cnt =0;

/* Free this SKB */
dev_kfree_skb(skb);

/* Re-enable interrupt */
iow(db, DM9KS_IMR, DM9KS_REGFF);

return 0;
}

/*
Stop the interface.
The interface is stopped when it is brought.
*/
static int dmfe_stop(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
DMFE_DBUG(0, "dmfe_stop", 0);

/* deleted timer */
del_timer(&db->timer);

netif_stop_queue(dev);

/* free interrupt */
free_irq(dev->irq, dev);

/* RESET devie */
phy_write(db, 0x00, 0x8000); /* PHY RESET */
iow(db, DM9KS_GPR, 0x01); /* Power-Down PHY */
iow(db, DM9KS_IMR, DM9KS_DISINTR); /* Disable all interrupt */
iow(db, DM9KS_RXCR, 0x00); /* Disable RX */

/* Dump Statistic counter */
#if FALSE
printk("\nRX FIFO OVERFLOW %lx\n", db->stats.rx_fifo_errors);
printk("RX CRC %lx\n", db->stats.rx_crc_errors);
printk("RX LEN Err %lx\n", db->stats.rx_length_errors);
printk("RESET %x\n", db->reset_counter);
printk("RESET: TX Timeout %x\n", db->reset_tx_timeout);
printk("g_TX_nsr %x\n", g_TX_nsr);
#endif

return 0;
}

static void dmfe_tx_done(unsigned long unused)
{
struct net_device *dev = dmfe_dev;
board_info_t *db = (board_info_t *)dev->priv;
int nsr;

DMFE_DBUG(0, "dmfe_tx_done()", 0);

nsr = ior(db, DM9KS_NSR);
if(nsr & 0x04) db->tx_pkt_cnt--;
if(nsr & 0x08) db->tx_pkt_cnt--;

if (db->tx_pkt_cnt <>tx_pkt_cnt =0;
}
if (db->Speed == 10)
{if(db->tx_pkt_cnt <>tx_pkt_cnt <>

return;
}

/*
DM9000 insterrupt handler
receive the packet to upper layer, free the transmitted packet
*/
#if LINUX_VERSION_CODE < dev =" dev_id;">

DMFE_DBUG(0, "dmfe_interrupt()", 0);

/* A real interrupt coming */
db = (board_info_t *)dev->priv;
spin_lock(&db->lock);

/* Save previous register address */
reg_save = inb(db->io_addr);

/* Disable all interrupt */
iow(db, DM9KS_IMR, DM9KS_DISINTR);

/* Got DM9000A/DM9010 interrupt status */
int_status = ior(db, DM9KS_ISR); /* Got ISR */
iow(db, DM9KS_ISR, int_status); /* Clear ISR status */

/* Link status change */
if (int_status & DM9KS_LINK_INTR)
{
netif_stop_queue(dev);
for(i=0; i<500; time ="0.5s" i="0;">Speed =100;
else db->Speed =10;
break;
}
udelay(1000);
}
netif_wake_queue(dev);
//printk("[INTR]i=%d speed=%d\n",i, (int)(db->Speed));
}
/* Received the coming packet */
if (int_status & DM9KS_RX_INTR)
dmfe_packet_receive(dev);

/* Trnasmit Interrupt check */
if (int_status & DM9KS_TX_INTR)
dmfe_tx_done(0);

if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
{
iow(db, DM9KS_IMR, 0xa2);
}
else
{
/* Re-enable interrupt mask */
iow(db, DM9KS_IMR, DM9KS_REGFF);
}

/* Restore previous register address */
outb(reg_save, db->io_addr);

spin_unlock(&db->lock);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
return IRQ_HANDLED;
#endif
}

/*
Get statistics from driver.
*/
static struct net_device_stats * dmfe_get_stats(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
DMFE_DBUG(0, "dmfe_get_stats", 0);
return &db->stats;
}

/*
Process the upper socket ioctl command
*/
static int dmfe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
DMFE_DBUG(0, "dmfe_do_ioctl()", 0);
return 0;
}

/* Our watchdog timed out. Called by the networking layer */
static void
dmfe_timeout(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;

DMFE_DBUG(0, "dmfe_TX_timeout()", 0);
printk("TX time-out -- dmfe_timeout().\n");
db->reset_tx_timeout++;
db->stats.tx_errors++;
#if FALSE
printk("TX packet count = %d\n", db->tx_pkt_cnt);
printk("TX timeout = %d\n", db->reset_tx_timeout);
printk("22H=0x%02x 23H=0x%02x\n",ior(db,0x22),ior(db,0x23));
printk("faH=0x%02x fbH=0x%02x\n",ior(db,0xfa),ior(db,0xfb));
printk("feH=0x%02x ffH=0x%02x\n",ior(db,0xfe),ior(db,0xff));
#endif
dmfe_reset(dev);
}
static void dmfe_reset(struct net_device * dev)
{
board_info_t *db = (board_info_t *)dev->priv;
u8 reg_save;
int i;
/* Save previous register address */
reg_save = inb(db->io_addr);

netif_stop_queue(dev);
db->reset_counter++;
dmfe_init_dm9000(dev);

db->Speed =10;
for(i=0; i<1000; time="1">Speed =100;
else db->Speed =10;
break;
}
udelay(1000);
}

netif_wake_queue(dev);

/* Restore previous register address */
outb(reg_save, db->io_addr);

}
/*
A periodic timer routine
*/
static void dmfe_timer(unsigned long data)
{
struct net_device * dev = (struct net_device *)data;
board_info_t *db = (board_info_t *)dev->priv;
DMFE_DBUG(0, "dmfe_timer()", 0);

if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
{
db->cont_rx_pkt_cnt=0;
iow(db, DM9KS_IMR, DM9KS_REGFF);
}
/* Set timer again */
db->timer.expires = DMFE_TIMER_WUT;
add_timer(&db->timer);

return;
}

#if !defined(CHECKSUM)
#define check_rx_ready(a) ((a) == 0x01)
#else
inline u8 check_rx_ready(u8 rxbyte)
{
if (!(rxbyte & 0x01))
return 0;
return ((rxbyte >> 4) | 0x01);
}
#endif

/*
Received a packet and pass to upper layer
*/
static void dmfe_packet_receive(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
struct sk_buff *skb;
u8 rxbyte, val;
u16 i, GoodPacket, tmplen = 0, MDRAH, MDRAL;
u32 tmpdata;

rx_t rx;

u16 * ptr = (u16*)℞
u8* rdptr;

DMFE_DBUG(0, "dmfe_packet_receive()", 0);

do {
/*store the value of Memory Data Read address register*/
MDRAH=ior(db, DM9KS_MDRAH);
MDRAL=ior(db, DM9KS_MDRAL);

ior(db, DM9KS_MRCMDX); /* Dummy read */
rxbyte = inb(db->io_data); /* Got most updated data */

/* packet ready to receive check */
if(!(val = check_rx_ready(rxbyte))) break;

/* A packet ready now & Get status/length */
GoodPacket = TRUE;
outb(DM9KS_MRCMD, db->io_addr);

/* Read packet status & length */
switch (db->io_mode)
{
case DM9KS_BYTE_MODE:
*ptr = inb(db->io_data) +
(inb(db->io_data) <<>io_data) +
(inb(db->io_data) << ptr =" inw(db-">io_data);
*(ptr+1) = inw(db->io_data);
break;
case DM9KS_DWORD_MODE:
tmpdata = inl(db->io_data);
*ptr = tmpdata;
*(ptr+1) = tmpdata >> 16;
break;
default:
break;
}

/* Packet status check */
if (rx.desc.status & 0xbf)
{
GoodPacket = FALSE;
if (rx.desc.status & 0x01)
{
db->stats.rx_fifo_errors++;
printk(" \n");
}
if (rx.desc.status & 0x02)
{
db->stats.rx_crc_errors++;
printk(" \n");
}
if (rx.desc.status & 0x80)
{
db->stats.rx_length_errors++;
printk(" \n");
}
if (rx.desc.status & 0x08)
printk(" \n");
}

if (!GoodPacket)
{
// drop this packet!!!
switch (db->io_mode)
{
case DM9KS_BYTE_MODE:
for (i=0; i inb(db->io_data);
break;
case DM9KS_WORD_MODE:
tmplen = (rx.desc.length + 1) / 2;
for (i = 0; i <>io_data);
break;
case DM9KS_DWORD_MODE:
tmplen = (rx.desc.length + 3) / 4;
for (i = 0; i <>io_data);
break;
}
continue;/*next the packet*/
}

skb = dev_alloc_skb(rx.desc.length+4);
if (skb == NULL )
{
printk(KERN_INFO "%s: Memory squeeze.\n", dev->name);
/*re-load the value into Memory data read address register*/
iow(db,DM9KS_MDRAH,MDRAH);
iow(db,DM9KS_MDRAL,MDRAL);
return;
}
else
{
/* Move data from DM9000 */
skb->dev = dev;
skb_reserve(skb, 2);
rdptr = (u8*)skb_put(skb, rx.desc.length - 4);

/* Read received packet from RX SARM */
switch (db->io_mode)
{
case DM9KS_BYTE_MODE:
for (i=0; i rdptr[i]=inb(db->io_data);
break;
case DM9KS_WORD_MODE:
tmplen = (rx.desc.length + 1) / 2;
for (i = 0; i <>io_data);
break;
case DM9KS_DWORD_MODE:
tmplen = (rx.desc.length + 3) / 4;
for (i = 0; i <>io_data);
break;
}

/* Pass to upper layer */
skb->protocol = eth_type_trans(skb,dev);
#if defined(CHECKSUM)
if (val == 0x01)
skb->ip_summed = CHECKSUM_UNNECESSARY;
#endif
netif_rx(skb);
dev->last_rx=jiffies;
db->stats.rx_packets++;
db->stats.rx_bytes += rx.desc.length;
db->cont_rx_pkt_cnt++;

if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
{
dmfe_tx_done(0);
break;
}
}

}while((rxbyte & 0x01) == DM9KS_PKT_RDY);
DMFE_DBUG(0, "[END]dmfe_packet_receive()", 0);

}
/*
Read a word data from SROM
*/
static u16 read_srom_word(board_info_t *db, int offset)
{
iow(db, DM9KS_EPAR, offset);
iow(db, DM9KS_EPCR, 0x4);
udelay(200);
iow(db, DM9KS_EPCR, 0x0);
return (ior(db, DM9KS_EPDRL) + (ior(db, DM9KS_EPDRH) << db =" (board_info_t">priv;
struct dev_mc_list *mcptr = dev->mc_list;
int mc_cnt = dev->mc_count;
u32 hash_val;
u16 i, oft, hash_table[4];

DMFE_DBUG(0, "dm9000_hash_table()", 0);

((u8 *)dev->dev_addr)[0] = 0x00;
((u8 *)dev->dev_addr)[1] = 0x80;
((u8 *)dev->dev_addr)[2] = 0x48;
((u8 *)dev->dev_addr)[3] = 0x12;
((u8 *)dev->dev_addr)[4] = 0x34;
((u8 *)dev->dev_addr)[5] = 0x56;
/* Set Node address */
for (i = 0, oft = 0x10; i <>dev_addr[i]);

/* Clear Hash Table */
for (i = 0; i <>

/* broadcast address */
hash_table[3] = 0x8000;

/* the multicast address in Hash Table : 64 bits */
for (i = 0; i < mcptr =" mcptr-">next) {
hash_val = cal_CRC((char *)mcptr->dmi_addr, 6, 0) & 0x3f;
hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16); } /* Write the hash table to MAC MD table */ for (i = 0, oft = 0x16; i <>> 8) & 0xff);
}
}

/*
Calculate the CRC valude of the Rx packet
flag = 1 : return the reverse CRC (for the received packet CRC)
0 : return the normal CRC (for Hash Table index)
*/
static unsigned long cal_CRC(unsigned char * Data, unsigned int Len, u8 flag)
{

u32 crc = ether_crc_le(Len, Data);

if (flag)
return ~crc;

return crc;

}

/*
Read a byte from I/O port
*/
static u8 ior(board_info_t *db, int reg)
{
outb(reg, db->io_addr);
return inb(db->io_data);
}

/*
Write a byte to I/O port
*/
static void iow(board_info_t *db, int reg, u8 value)
{
outb(reg, db->io_addr);
outb(value, db->io_data);
}

/*
Read a word from phyxcer
*/
static u16 phy_read(board_info_t *db, int reg)
{
/* Fill the phyxcer register into REG_0C */
iow(db, DM9KS_EPAR, DM9KS_PHY | reg);

iow(db, DM9KS_EPCR, 0xc); /* Issue phyxcer read command */
udelay(100); /* Wait read complete */
iow(db, DM9KS_EPCR, 0x0); /* Clear phyxcer read command */

/* The read data keeps on REG_0D & REG_0E */
return ( ior(db, DM9KS_EPDRH) <<>

}

/*
Write a word to phyxcer
*/
static void phy_write(board_info_t *db, int reg, u16 value)
{
/* Fill the phyxcer register into REG_0C */
iow(db, DM9KS_EPAR, DM9KS_PHY | reg);

/* Fill the written data into REG_0D & REG_0E */
iow(db, DM9KS_EPDRL, (value & 0xff));
iow(db, DM9KS_EPDRH, ( (value >> 8) & 0xff));

iow(db, DM9KS_EPCR, 0xa); /* Issue phyxcer write command */
udelay(500); /* Wait write complete */
iow(db, DM9KS_EPCR, 0x0); /* Clear phyxcer write command */
}
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Davicom DM9000A/DM9010 ISA/uP Fast Ethernet Driver");
MODULE_PARM(mode, "i");
MODULE_PARM(irq, "i");
MODULE_PARM(iobase, "i");
MODULE_PARM_DESC(mode,"Media Speed, 0:10MHD, 1:10MFD, 4:100MHD, 5:100MFD");
MODULE_PARM_DESC(irq,"EtherLink IRQ number");
MODULE_PARM_DESC(iobase, "EtherLink I/O base address");

/* Description:
when user used insmod to add module, system invoked init_module()
to initilize and register.
*/
int init_module(void)
{
//set GPIO13 input, 2006-08-03
pxa_gpio_mode(9 | GPIO_IN);
set_irq_type(IRQ_GPIO(9), IRQT_BOTHEDGE);
printk("MSC0 = %x\n",MSC0);
printk("MSC1= %x\n",MSC1);
printk("MSC2 = %x\n",MSC2);
iobase = (unsigned long)ioremap(DM9KS_MIN_IO, 0x00100000);
switch(mode) {
case DM9KS_10MHD:
case DM9KS_100MHD:
case DM9KS_10MFD:
case DM9KS_100MFD:
media_mode = mode;
break;
default:
media_mode = DM9KS_AUTO;
}

dmfe_dev = dmfe_probe1();
if(IS_ERR(dmfe_dev))
return PTR_ERR(dmfe_dev);
return 0;
}
/* Description:
when user used rmmod to delete module, system invoked clean_module()
to un-register DEVICE.
*/
void cleanup_module(void)
{
struct net_device *dev = dmfe_dev;
DMFE_DBUG(0, "clean_module()", 0);

unregister_netdev(dmfe_dev);
release_region(dev->base_addr, 2);
#if LINUX_VERSION_CODE <>

DMFE_DBUG(0, "clean_module() exit", 0);
}
//#endif

module_init(init_module);
module_exit(cleanup_module);

沒有留言:

張貼留言